메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
서승덕 (경북대학교 농과대학 농공학과) 임규동 ([주]한보종합건설)
저널정보
경북대학교 농업생명과학대학 경북대농학지 경북대농학지 제5권
발행연도
1987.1
수록면
158 - 167 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The purpose of this study is to inquire and analyse the relation between traveltime (Tc) and watetshed physical characteristics surveyed such as river length (L), Lea, river main slope (s), base length of time area diagram, and storage constant (k). The results obtained in this study are as follows. The average widths of watersheds were with the range from 4.6 kilometers to 16.7 kilometers. The shape factors of main stream ranged from 0.08 to 0.37. The average slopes to main 8tream were within the range of 1.7-5.5 meter per kilometer. The relation between the base length and traveltime from S. C. S. method, Rational method, and RZIHA+KRAVEN method were derived $Tc=0.524{\times}1.35^c$ (r=0.98), $Tc=0.628{\times}1.339^c$, (r=0.98), $Tc=0.667{\times}1.342^c$ (r=0.97). The base length of the time-area diagram (c) for the IUH was derived as $c=0.9(\frac{L.L_{ca}}{\sqrt{s}})^{0.35}$ and correlation coefficient was 0.98 which defined a high significance. The storage constant K, derived in this study was $K=8.32+0.0213{\frac{L}{\sqrt{s}}}$ with correlation coefficient (0.96). The relation between storage Constant and conventional formula were figured out $Tc=0.0003{\times}3.323^k$ (r=0.97). $Tc=0.00045{\times}3.268^k$ (r=0.99) and $Tc=0.0004{\times}3.26^k$ (r=0.963). The base length (c) and storage constant (k) of time-Area Diagram were very important parts that determined traveltime for flood events. In the estimate of travel time for predicting flood volume, the formula of $Tc=0.524{\times}1.35^c$ that would be available to apply the Nak - Dong river watershed area and homogeneous watershed characteristics was found.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0