메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
신재기 (한국수자원공사 수자원연구원) 허진 (세종대학교 지구환경과학과) 이흥수 (한국수자원공사 수자원연구원) 박재충 (한국수자원공사 안동댐관리단) 황순진 (건국대학교 환경과학과)
저널정보
한국물환경학회 수질보전 수질보전 제22권 제5호
발행연도
2006.1
수록면
933 - 942 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this study, temperature, turbidity, suspended paniculate matter (SPM) distribution and mineral characteristics were investigated to explain spatial distribution of the turbid-water environment of Yongdam reservoir in July, 2005. Six stations were selected along a longitudinal axis of the reservoir and sampling was conducted in four depths of each station. Water temperature was showed the typical stratified structure by the effects of irradiance and inflow. Content of inorganic matter in suspended particles increased with the concentration of suspended particulate matter (SPM) due to the reduction of ash-free dry matter (AFDM). Turbidity ranged from 0.6 to 95.1 NTU and the maximum turbidity value of each station sharply increased toward downstream from upstream. The high turbidity layers were located at the depth between 12~16 m. Particle size ranged from 0.435 to $482.9{\mu}m$. day and silt-sized particles corresponded 91.9~98.9% and 1.1~8.0% in total numbers of SPM, respectively. Turbidity showed high correlations with clay (r=0.763, p<0.05) and silt content (r=0.870, p<0.05).Inorganic matter content (r=0.960, p<0.01) was more correlated with turbidity than organic matter (r=0.823, p<0.05). Mineral characterization using x-ray diffraction and electron probe microanalyzer demonstrated that the major minerals contained in the SPM were kaolinite, illite, vermiculite and smectite. As results of this study, surface water discharge as well as small size of the SPM were suggested as long-term interfering factors in settling down the turbid water in the reservoir.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0