메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Choi, Hyung Tae (Department of Forest Environment, Korea Forest Research Institute) Kim, Kyongha (Department of Forest Environment, Korea Forest Research Institute) Jun, Jae-Hong (Department of Forest Environment, Korea Forest Research Institute) Yoo, Jae-Yun (Department of Forest Environment, Korea Forest Research Institute) Jeong, Yong-Ho (Department of Forest Environment, Korea Forest Research Institute)
저널정보
한국산림과학회(구 한국임학회) 한국산림과학회지 한국산림과학회지 제95권 제5호
발행연도
2006.1
수록면
569 - 579 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study focuses on the application of multi-criteria performance measures based on the concept of equifinality to the calibration of the rainfall-runoff model TOPMODEL in a small deciduous forest catchment. The performance of each parameter set was evaluated by six performance measures, individually, and each set was identified as a behavioral or non-behavioral parameter set by a given behavioral acceptance threshold. Many behavioral parameter sets were scattered throughout the parameter space, and the range of model behavior and the sensitivity for each parameter varied considerably between the different performance measures. Sensitivity was very high in some parameters, and varied depending on the kind of performance measure as well. Compatibilities of behavioral parameter sets between different performance measures also varied, and very few parameter sets were selected to be used in making god predictions for all performance measures. Since different behavioral parameter sets with different likelihood weights were obtained for each performance measure, the decision on which performance measure to be used may be very important to achieve the goal of study. Therefore, one or more suitable performance measures should be selected depending on the environment and the goal of a study, and this may lead to decrease model uncertainty.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0