메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Mitrouli, M. (Department of Mathematics University of Athens) Kalogeropoulos, G. (Department of Mathematics University of Athens)
저널정보
한국전산응용수학회 The Korean journal of computational & applied mathematics, 한국전산응용수학술지 Series A The Korean journal of computational & applied mathematics, 한국전산응용수학술지 Series A 제5권 제3호
발행연도
1998.1
수록면
717 - 734 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In the present paper is presented a new matrix pencil-based numerical approach achieving the computation of the elemen-tary divisors of a given matrix $A \in C^{n\timesn}$ This computation is at-tained without performing similarity transformations and the whole procedure is based on the construction of the Piecewise Arithmetic Progression Sequence(PAPS) of the associated pencil $\lambda I_n$ -A of matrix A for all the appropriate values of $\lambda$ belonging to the set of eigenvalues of A. This technique produces a stable and accurate numerical algorithm working satisfactorily for matrices with a well defined eigenstructure. The whole technique can be applied for the computation of the first second and Jordan canonical form of a given matrix $A \in C^{n\timesn}$. The results are accurate for matrices possessing a well defined canonical form. In case of defective matrices indications of the most appropriately computed canonical form. In case of defective matrices indication of the most appropriately computed canonical form are given.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0