메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정대율 (경상대학교 경영대학 경영정보학과)
저널정보
한국정보시스템학회 정보시스템연구 정보시스템연구 제7권 제1호
발행연도
1998.1
수록면
181 - 208 (28page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In many literatures of model management, various schemes for representing model base schema have proposed. Ultimately, the goal is to arrive at a set of mutually supportive and synergistic methodologies and tools for the modeling problem domain and model base design. This paper focus on how best to structure and represent conceptual model of problem domain and schema of model base. Semantic concepts and modeling constructs are valuable conceptual tools for understanding the structural relationships and constraints involved in an model management environment. To this end, we reviewed the model management literature, and analyzed the constructs of modeling tools of data model management graph-based approach. Although they have good tools but most of them are not enough for the representation of structural relationships and constraints. So we wanted more powerful tools which can represent diverse constructs in a decision support modeling and model base schema design. For the design of a model base, we developed object modeling framework which uses Object Modeling Techniques (OMT). In Object Modeling Framework, model base schema are classified into conceptual schema, logical schema, and physical schema. The conceptual schema represents the user's view of problem domain, and the logical schema represents a model formatted by a particular modeling language. The schema design, this paper proposes an extension of Object Model to overcome some of the limitations exhibited by the OMT. The proposed tool, Extended Object Model(EOM) have diverse constructs for the representation of decision support problem domain and conceptual model base schema.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0