메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최승호 (동신대학교 정보통신공학부) 엄기완 (전남대학교 전자공학과) 강상기 (삼성전자) 김진영 (전남대학교 전자공학과)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제22권 제8호
발행연도
2003.1
수록면
703 - 710 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
코퍼스 기반 음성합성방식은 그 합성음의 자연성이 매우 우수하여 널리 사용되고 있으나 대용량의 데이터베이스 (DB)를 사용하기 때문에 그 적용분야가 매우 제한적이다. 본 연구에서는 이러한 코퍼스 기반 음성합성기의 대용량 DB 문제를 해결하기 위한 방안으로서 DB 축소 방법 대한 알고리듬을 제안하고 평가하였다. 본 논문에서는 DB 축소 알고리듬으로서 세 가지 방법을 제안하였는데, 첫 번째는 Modified K-means 군집화를 이용한 DB 축소 알고리듬이고 다음은 적절한 문장 셋을 정의하고 이 문장 셋을 합성할 때 사용된 단위들을 이용하는 방법이다. 마지막으로는 대용량 문장 셋을 정의하고 해당 문장을 음성합성하고, 음편들의 사용 빈도수를 고려하여 군집화를 하는 것이다. 세 가지 방법을 이용하여 합성 DB를 유사한 크기로 축소하였을 때, 대용량 문장 셋과 빈도를 고려한 세 번째 방법이 가장 우수한 음질을 보였다. 또한 마지막 방법은 합성음의 음질은 저하시키지 않으면서 합성 DB만을 감소시키는 성능을 보여, 제안된 방법의 타당함을 입증할 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0