메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
민경진 (계명대학교 공중보건학과) 송규문 (계명대학교 통계학과) 김광환 (단국대학교병원 의무기록과)
저널정보
한국의료질향상학회 한국의료질향상학회지 한국의료질향상학회지 제9권 제1호
발행연도
2002.1
수록면
18 - 32 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background : We developed a model for predicting premature discharge and identifying related factors. Methods : Prediction model was developed by data mining techniques. Basic data were collected from the total discharge data base of a university hospital in Chungnam Province during the period from July 1, 1999 to June 30, 2000. Results : 1. Among 22,873 patients, the number of patients discharged with usual discharge orders were 21,695 or 94.8%. The number of the prematurely discharged patients were 1,178 or 5.2%. 2. The primary reason for unusual discharge was transfer to other hospital. Move to a local hospital closer to their home and burdensome medical expenses were main reasons. 3. Predictability of each model was tested using the top 10 percent of patients with the highest probabilities of premature discharge. The neural network model was chosen as the most appropriate model for predicting prematurely discharged patients. 4. Ten percent of the total number of patients had been selected randomly to test the effectiveness of the neural network model. We have chosen the threshold of the neural network model as 0.7. The number of patients who were expected to discharge prematurely was 312. Among them, 241 had been discharged prematurely (77.2%). Conclusion : Of the several data mining techniques used, the neural network model was the most effective, It can be used to identify and manage the patients who are expected to discharge prematurely.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0