메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이강진 (Div. of Fundamental Engineering and Technology, National Agricultural Mechanization Research Institute) 최규홍 (Div. of Fundamental Engineering and Technology, National Agricultural Mechanization Research Institute) 김기영 (Div. of Fundamental Engineering and Technology, National Agricultural Mechanization Research Institute) 최동수 (Div. of Fundamental Engineering and Technology, National Agricultural Mechanization Research Institute)
저널정보
한국농업기계학회 바이오시스템공학(구 한국농업기계학회지) 바이오시스템공학 제27권 제2호
발행연도
2002.1
수록면
117 - 124 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
This research was conducted to develop a method to remove the effect of surface temperature of Shingo pears for sugar content measurement. Sugar content was measured by a near-infrared spectrum analysis technique. Reflected spectrum and sugar content of a pear were used for developing regression models. For the model development, reflected spectrums having wavelengths in the range of 654 to 1,052nm were used. To remove the effect of surface temperature, special sample preparation techniques and partial least square (PLS) regression models were proposed and tested. 71 Shingo pears stored in a cold storage, which had 2$^{\circ}C$ inside temperature, were taken out and left in a room temperature for a while. Temperature and reflected spectrum of each pear was measured. To increase the temperature distribution of samples, temperature and reflected spectrum of each pear was measured four times with one hour twenty minutes interval. During the experiment, temperature of pears increased up to 17 $^{\circ}C$. The total number of measured spectrum was 284. Three groups of spectrum data were formed according to temperature distribution. First group had surface temperature of 14$^{\circ}C$ and total number of 51. Second group consisted of the first and the fourth experiment data which contained the minimum and the maximum temperatures. Third group consisted of 155 data with normal temperature-distribution. The rest data set were used for model evaluation. Results shelved that PLS model I, which was developed by using the first data group, was inadequate for measuring sugar content of pears which had different surface temperatures from 14$^{\circ}C$. After temperature compensation, sugar content predictions became close to the measured values. Since using many data which had wide range of surface temperatures, PLS model II and III were able to predict sugar content of pears without additional temperature compensation. PLS model IV, which included the surface temperatures as an independent variable. showed slightly improved performance(R$^2$=0.73). Performance of the model could be enhanced by using samples with more wide range of temperatures and sugar contents.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0