메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
박영희 (서강대학교 컴퓨터학과 음성언어처리연구실) 정민화 (서강대학교 컴퓨터학과 음성언어처리연구실)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제21권 제3호
발행연도
2002.1
수록면
330 - 338 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
대화체 연속음성은 자연스러운 발화로 낭독체 문장에 비해 잡음, 간투어와 같은 비문법적인 요소가 많고, 발음의 변이가 심하다. 이런 이유로 대화체 연속음성을 인식하기 위해서는 대화 현상을 분석하고 그 특징을 반영하여야 한다. 본 논문에서는 실제 대화음성에 빈번히 나타나는 대화 현상들을 분류하고 각 현상들을 모델링하여 대화체 연속음성 인식을 위한 기본 베이스라인을 구축하였다. 대화 현상을 묵음 구간과 잡음, 간투어, 반복/수정 발화의 디스풀루언시 (disfluencies), 표준전사와 다른 발음을 갖는 발음변이 현상으로 나누었다. 발음변이 현상은 다시 양성음의 음성음화, 음운축약/탈락현상, 패턴화된 발음변이, 발화오류로 세분화하였다. 대화체 음성인식을 위해서 빈번히 나타나는 묵음구간을 고려한 학습과 잡음, 간투어 처리를 위한 음향모델을 각각 추가하였다. 발음변이 현상에 대해서는 출현빈도수가 높은 것들만을 대상으로 발음사전에 다중 발음열을 추가하였다. 대화현상을 고려하지 않고 낭독체 스타일로 음성인식을 수행하였을 때 형태소 에러율 (MER: Morpheme Error Rate)은 31.65%였다. 이에 대한 형태소 에러율의 절대값 감소는 묵음 모델과 잡음 모델을 적용했을 때 2.08%, 간투어 모델을 적용했을 때 0.73%, 발음변이 현상을 반영했을때 0.92%였으며, 최종적으로 27.92%의 형태소 에러율을 얻었다. 본 연구는 대화체 연속음성 인식을 위한 기초 연구로 음향모델과 어휘모델, 언어모델 각각에 대한 베이스라인으로 삼고자 한다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0