메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Shim, Hong-Tae (Department of Mathematics, Sun Moon University) Jung, Kap-Hun (Department of mathematical Education, Dankook University)
저널정보
한국전산응용수학회 The Korean journal of computational & applied mathematics, 한국전산응용수학술지 Series A The Korean journal of computational & applied mathematics, 한국전산응용수학술지 Series A 제9권 제2호
발행연도
2002.1
수록면
657 - 666 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
ThE Gibbs' phenomenon in the classical Fourier series is well-known. It is closely related with the kernel of the partial sum of the series. In fact, the Dirichlet kernel of the courier series is not positive. The poisson kernel of Cesaro summability is positive. As the consequence of the positiveness, the partial sum of Cesaro summability does not exhibit the Gibbs' phenomenon. Most kernels associated with wavelet expansions are not positive. So wavelet series is not free from the Gibbs' phenomenon. Because of the excessive oscillation of wavelets, we can not follow the techniques of the courier series to get rid of the unwanted quirk. Here we make a positive kernel For Meyer wavelets and as the result the associated summability method does not exhibit Gibbs' phenomenon for the corresponding series .

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0