메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김성학 (유한대학 전자계산과)
저널정보
한국컴퓨터산업교육학회 컴퓨터산업학회논문지 컴퓨터산업학회논문지 제2권 제7호
발행연도
2001.1
수록면
945 - 952 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
인터넷 사용 인구의 증가로 전자상거래는 새로운 상거래 형태로 빠르게 발전하고 있으며, 대다수 인터넷 쇼핑몰들은 사용자에게 더 많은 정보와 편리한 사용자 인터페이스를 제공함으로써 보다 많은 고객을 확보하려고 노력하고 있다. 편리한 인터페이스 중의 하나는 상품을 추천해주는 서비스이며, 이를 위해서는 쇼핑몰에서의 구매정보, 행동 그리고 장바구니 등 사용자로부터 특정 행동패턴을 추출하고 분석하는 방법이 필요하다. 이러한 방법 중에서 상품간의 연관성 추출을 위하여 주로 연관규칙과 순차패턴이 이용되고 있는데, 대부분의 온라인 전자상거래에서는 사용자의 정보 또는 구매이력을 가지고 카테고리를 중심으로 수행하고 있다. 그러나 이는 단일한 구매패턴에 의한 연관성만을 나타낼 뿐이며, 상품 각각에 대한 연관성을 찾아보기 힘들다. 또한 단일 구매패턴은 계산 비용이 작기는 하지만 사용자의 구매패턴을 정확하게 반영하기 어렵다. 따라서 본 논문에서는 이러한 문제를 해결하기 위하여 카테고리 독립적이고 단일 항목간의 구조화를 통하여 항목간의 연계성을 갖는, 다중 구매패턴을 고려하는 마이닝 방법을 제안한다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0