메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
송영웅 (대구가톨릭대학교 산업보건학과) 정민근 (포항공과대학교 산업공학과)
저널정보
한국산업보건학회 (구 한국산업위생학회) 한국산업보건학회지 한국산업보건학회지 제15권 제1호
발행연도
2005.1
수록면
61 - 70 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study investigated the spinal loads(L5/S1 disc compression and shear forces) predicted from four biomechanical models: one EMG model and three optimization models. Three objective functions used in the optimization models were to miminize 1) the cubed muscle forces : MF3, 2) the cubed muscle stress : MS3, 3) maximum muscle intensity : MI. Twelve healthy male subjects participated in the isometric voluntary exertion tests to six directions : flexion/extension, left/right lateral bending, clockwise/ counterclockwise twist. EMG signals were measured from ten trunk muscles and spinal loads were assessed at 10, 20, 30, 40, 50, 60, 70, 80, 90%MVE(maximum voluntary exertion) in each direction. Three optimization models predicted lower L5/S1 disc compression forces than the EMG model, on average, by 31%(MF3), 27%(MS3), 8%(MI). Especially, in twist and extension, the differences were relatively large. Anterior-posterior shear forces predicted from optimization models were lower, on average, by 27%(MF3), 21%(MS3), 9%(MI) than by the EMG model, especially in flexion(MF3 : 45%, MS3 : 40%, MI : 35%). Lateral shear forces were predicted far less than anterior-posterior shear forces(total average = 124 N), and the optimization models predicted larger values than the EMG model on average. These results indicated that the optimization models could underestimate compression forces during twisting and extension, and anterior-posterior shear forces during flexion. Thus, future research should address the antagonistic coactivation, one major reason of the difference between optimization models and the EMG model, in the optimization models.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0