메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이호동 (동의대학교 한의과대학 침구경혈학교실) 윤현민 (동의대학교 한의과대학 침구경혈학교실) 장경전 (동의대학교 한의과대학 침구경혈학교실) 송춘호 (동의대학교 한의과대학 침구경혈학교실) 안창범 (동의대학교 한의과대학 침구경혈학교실)
저널정보
대한침구의학회 대한침구의학회지 Journal of acupuncture research 제17권 제3호
발행연도
2000.1
수록면
208 - 218 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study was undertaken to determine if Salviae Radix (SR) exerts protective effect against oxidant-induced inhibition of phosphate uptake in renal proximal tubular cells. Membrane transport function and cell death were evaluated by measuring phosphate uptake and trypan blue exclusion, respectively, in opossum kidney (OK) cells, an established proximal tubular cell line. $H_2O_2$ was used as a model oxidant. $H_2O_2$ inhibited the phosphate uptake in a dose-dependent manner over the concentration range of 0.1-0.5 mM. Similar fashion was observed in cell death. However, the phosphate uptake was more vulnerable to $H_2O_2$ than cell death, suggesting that $H_2O_2$-induced inhibition of phosphate uptake is not totally attributed to cell death. Decreasedphosphate uptake was associated with ATP depletion and inhibition of $Na^+$-pump activity as determined by direct inhibition of $N^+-K^+$-ATPase activity. When cells were treated with $H_2O_2$ in the presence of 0.05% SR, the inhibition of phosphate uptake and cell death induced by $H_2O_2$ was significantly attenuated. SR restored ATP depletion and decreased $Na^+-K^+$-ATPase activity, and this is likely responsible for the protective effect of SR on decreased phosphate uptake. The protective effect of SR was similar to the $H_2O_2$ scavenger catalase. SR reacts directly with $H_2O_2$ to reduce the effective concentration of the oxidant. The iron chelator deferoxamine prevented the inhibition of phosphate uptake and cell death induced by $H_2O_2$, suggesting that $H_2O_2$-induced cell injury is resulted from an iron-dependent mechanism. These results indicate that SR exerts the protective effect against $H_2O_2$-induced inhibition of phosphate uptake by reacting directly with $H_2O_2$ like the $H_2O_2$scavenger enzyme catalase, in OK cells. However, the underlying mechanism remains to be explored.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0