메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
응우옌하남 (한국 항공대학교 대학원 컴퓨터공학과) 최규석 (청운대학교 컴퓨터학과)
저널정보
한국컴퓨터산업교육학회 컴퓨터산업학회논문지 컴퓨터산업학회논문지 제7권 제1호
발행연도
2006.1
수록면
47 - 56 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
혈액에서 추출된 프로테옴 패턴(단백질 DNA 정보)는 인간 신체 기관의 병리학적 상태를 잠재적으로 반영하고 있다. 신체기관의 질병이나 이상은 이러한 프로테옴 패턴의 분석에 의해 식별될 수 있다고 알려져 있으며 프로테옴 패턴 정보를 분석하는 여러 가지 방법들이 현재 존재하고 있다. 본 논문에서는 SVM(Support Vector Machine)과 GA(Genetic Algoritm)의 융합에 근거하여 암 진단을 위한 디시전 모델의 효과적 학습(learning) 방법을 제안한다. <중략> 그 결과로서 개별적 kernel function 들보다 더 우수한 분류성능을 갖는 최적의 디시전 모델이 얻어졌다. 위암 데이터 셋 과 두 개의 일반 데이터 셋(대장암, 백혈병)을 사용한 컴퓨터 실험에서 제안된 방법이 다른 Kernel function 들에 비해 더 우수한 분류 성능을 보여주었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0