메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김세동 (두원공과대학) 신동환 (서울시립대학교 전자전기공학부) 이영석 (청운대학교 전자공학과) 노승용 (서울시립대학교 전자전기공학부) 김성환 (서울시립대학교 전자전기공학부)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제18권 제7호
발행연도
1999.1
수록면
101 - 111 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 정확한 콘크리트 설계강도 분류를 위해 인공지능 기법에 바탕을 둔 증거축적방법에 의한 초음파신호의 패턴인식방법을 제안하였다. 이를 위해 우선 초음파신호의 특징파라메터로 분산, 영점교차횟수, 평균주파수, 자기회귀모델계수 및 선형 켑스트럼계수를 추출하였다. 추출된 특징파라메터들의 각각의 특성을 알아보고, 하나의 특징파라메터로 설계강도의 정확한 분류가 어렵다는 것을 보였다. 이러한 문제점을 해결하기 위하여 추출된 다수의 특징파라메터들을 이용하여 설계강도 분류를 증거축적방법을 통해 수행하였다. 또한, 이 증거축적방법을 콘크리트 패턴인식에 적용하기 위해 퍼지매핑 함수를 도입하였다. 본 논문에서 제안한 알고리즘이 다수의 특징파라메터들을 효율적으로 이용하여 92%의 패턴인식률을 보였으며, 이는 기존의 패턴 분류 알고리즘보다 콘크리트 설계강도를 보다 정확하게 분류함을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0