메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
신상무 (숭실대학교 섬유공학과)
저널정보
한국섬유공학회 한국섬유공학회지 한국섬유공학회지 제36권 제3호
발행연도
1999.1
수록면
257 - 266 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Quick Response systems in the textile/apparel industry are recognized as the essential strategic information technology for more efficient production and ultimate consumer satisfaction. QR will eventually lead to demand activated manufacturing and mass-customized production. Much data specification efforts are needed to effectively take the individual body features and style preference of the consumer into account in automated apparel production process using CAD/CAM. Trial and error fitting methods will no longer be economically feasible with such mass-customized production. The purpose of this study is to compare basic bodice pattern design methods for mass-customized QR system using pattern CAD. We examined whether there was any significant difference in measurement items and test fit evaluation between drafts based on representatively selected Munwha and Armstrong methods. Followings were the findings of this research. 1) There were notable differences at 5% significance level between measuring two patterns in 13 items. Munwha method showed larger basic width line, armhole line, and armhole depth than the Armstrong method. 2) In evaluation of fitness, Armstrong method fitted better than Munwha method, especially bust, waist, armhole, front waist dart, and side line. 10 items showed significant difference at 5% significance level. Therefore, without try-on system with experts, like automated pattern CAD in mass-customized Quick Response systems, draft methods measuring more parts of the body, represented by the Armstrong method, seem to be suitable for better-fit basic patterns.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0