메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
서상룡 (Department of Biosystems & Agricultural Engineering Chonnam National University) 김영태 (Department of Biosystems & Agricultural Engineering Chonnam National University) 유수남 (Department of Biosystems & Agricultural Engineering Chonnam National University) 최영수 (Department of Biosystems & Agricultural Engineering Chonnam National University)
저널정보
한국농업기계학회 바이오시스템공학(구 한국농업기계학회지) 바이오시스템공학 제31권 제1호
발행연도
2006.1
수록면
59 - 64 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Application of herbicide for rice cropping is inevitable but notorious for its side effect of environmental pollution. Precision fanning will be one of important tools for the least input and sustainable fanning and could be achieved by implementation of the variable rating technology. If a device to detect weeds in rice field is available, herbicide could be applied only to the places where it is needed by the manner of the variable rating technology. The study was carried out to develop an algorithm of image processing to detect weeds in rice field using a machine vision system of multi-spectral digital images. A series of multi-spectral rice field picture of 560, 680 and 800 nm of center wavelengths were acquired from the 27th day to the 39th day after transplanting in the ineffective tillering stage of a rice growing period. A discrimination model to distinguish pixels of weeds from those of rice plant and weed image was developed. The model was proved as having accuracies of 83.6% and 58.9% for identifying the rice plant and the weed, respectively. The model was used in the algorithm to differentiate weed images from mingled images of rice plant and weed in a frame of rice field picture. The developed algorithm was tested with the acquired rice field pictures and resulted that 82.7%, 11.9% and 5.4% of weeds in the pictures were noted as the correctly detected, the undetected and the misclassified as rice, respectively, and 81.9% and 18.0% of rice plants in the pictures were marked as the correctly detected and the misclassified as weed, respectively.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0