메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최환진 (한국과학기술원 전산학과/인공지능연구센터) 김연준 (한국과학기술원 전산학과/인공지능연구센터) 오영환 (한국과학기술원 전산학과/인공지능연구센터)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제16권 제2호
발행연도
1997.1
수록면
71 - 79 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 FVQ-DHMM(fuzzy vector quantization-discrete hidden Markov model)에서 강인한 출력확률의 추정을 위해서 코드워드 종속 거리 정규화와 출력확률에 대한 instar 형태의 퍼지 평활화 방법을 제안한다. FVQ-DHMM은 DHMM의 변형된 모델로, 상태별 출력확률이 입력패턴에 대한 각 코드워드와의 가중치와 출력확률의 곱에 대한 합의 형태로 추정된다. FVQ-DHMM의 성능이 가중치 요소와 상태별 출력분포에 영향을 받으므로, 가중치 요소와 상태별 출력분포를 강인하게 추정하는 방법이 필요하게 된다. 실험결과, 제안된 코드워드 종속 거리 정규화(CDDN : codeword dependent distance normalization)를 적용한 방법이 기존의 FVQ-DHMM에 비해 24%의 오인식률 감소가 있었으며, 상태별 출력분포에 대해서 평활화를 적용한 경우 79%의 오식율을 감소 시킴을 알 수 있었다. 이러한 결과는 제안된 CDDN과 퍼지 평활화의 사용이 향상된 인식율을 얻는데 주요하며, 결과적으로 제안된 방법이 FVQ-HMM을 위한 강인한 출력확률의 추정을 위한 대안으로 유용함을 보여준다고 할 수 있다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0