메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
Cattaneo, Tiziana M.P. (Istituto Sperimentale Lattiero-Caseario) Maraboli, Adele (Istituto Sperimentale Lattiero-Caseario) Barzaghi, Stefania (Istituto Sperimentale Lattiero-Caseario) Giangiacomo, Roberto (Istituto Sperimentale Lattiero-Caseario)
저널정보
한국근적외분광분석학회 한국근적외분광분석학회 학술발표회 한국근적외분광분석학회 2001년도 NIR-2001
발행연도
2001.1
수록면
1,156 - 1,156 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This work aimed to prove the feasibility of NIR spectroscopy to detect vegetable protein isolates (soy, pea and wheat) in milk powder. Two hundred and thirty-nine samples of genuine and adulterated milk powder (NIZO, Ede, NL) were analysed by NIRS using an InfraAlyzer 500 (Bran+Luebbe). NIR spectra were collected at room temperature, and data were processed by using Sesame Software (Bran+Luebbe). Separated calibrations for each non-milk protein added, in the range of 0-5%, were calculated. NIR data were processed by using Sesame Software (Bran+Luebbe). Prediction and validation were made by using a set of samples not included into the calibration set. The best calibrations were obtained by the PLSR. The type of data pre-treatment (normalisation, 1$\^$st/ derivative, etc..) was chosen to optimize the calibration parameters. NIRS technique was able to predict with good accuracy the percentage of each vegetable protein added to milk powder (soy: R$^2$ 0.994, SEE 0.193, SEcv 0.301, RMSEPall 0.148; pea: R$^2$ 0.997, SEE 0.1498, SEcv 0.207, RMSEPall 0.148, wheat: R$^2$ 0.997, SEE 0.1418, SEcv 0.335, RMSEPall 0.149). Prediction results were compared to those obtained using other two techniques: capillary electrophoresis and competitive ELISA. On the basis of the known true values of non-vegetable protein contents, the NIRS was able to determine more accurately than the other two techniques the percentage of adulteration in the analysed samples.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0