메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
Na, Dae-Bok (College of Pharmacy, Sookmyung Womens University) Hur, Yun-Jeong (College of Pharmacy, Sookmyung Womens University) Park, Young-Joo (College of Pharmacy, Sookmyung Womens University) Cho, Jung-Hwan (College of Pharmacy, Sookmyung Womens University)
저널정보
한국근적외분광분석학회 한국근적외분광분석학회 학술발표회 한국근적외분광분석학회 2001년도 NIR-2001
발행연도
2001.1
수록면
1,289 - 1,289 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Water-methanol and water-acetonitrile mixtures are frequently used as HPLC solvent system and strong hydrogen bonding is well-known. But a detailed aspect of water-methanol and/or water-acetonitrile mixtures have not been shown with direct spectral evidence. Recently, near infrared spectroscopy and chemometric data refinery have been successfully combined in many applications. On the basis of factor analytical methods, the spectral features of water-methanol and water-acetonitrile mixtures were studied to reveal the detail of mixtures. Water-methanol and water-acetonitrile mixtures were prepared with varying concentration of each constituent and near infrared spectral data were acquired in the range of 1100-2500nm with 2-nm interval. The data matrices were analysed with ITTFA(Iterative Target Transform Factor Analysis) algorithm implemented as MATLAB codes. As a result, the concentration profiles of water, methanol and water-methanol complex were resolved and the spectra of water-methanol complexes were calculated, which cannot be acquired with pure complexes. A similar result was obtained with NIR spectral data of water-acetonitrile mixtures. Moreover, pure spectra of hydrogen-bonding complexes of water-methanol and water-acetonitrile can be computed, while any other usual physical methods cannot isolated those complexes for acquiring pure component spectra.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0