메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
박경화 (연세대학교 생활과학대학 의류환경학과) 천종숙 (연세대학교 생활과학대학 의류환경학과)
저널정보
한국의류학회 한국의류학회지 한국의류학회지 제20권 제1호
발행연도
1996.1
수록면
43 - 53 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study was initiated to investigate (1) the current sizing system for mail-order clothing, (2) consumers' preference for sizing systems, and (3) consumers' satisfaction with garment size. The apparel items and the sizes available at various mail-order companies in Korea were also reviewed. This investigation of consumers' preferences for various size description systems includes a survey of 410 men and women who had purchased garments by mail-order. The data were analyzed by Statistical Analysis System/pc. The major results are as follows; 1. The sizing system of mail-order clothing was different by garment items. The number of apparel sizes available for mail-order purchasing was three or less. The most mail∼order garments were labeled by the numerical size codes of body girth nleasurements or letter code (S, M, L). 2. The size description system most prefered by female subjects(N : 360) was the numerical size code of a body measurement(55.4%). The combination of bust-hips-height measurements size codes were prefered by 13.3% . The pictogram was least premiered by the subjects. 3. The apparel items that subjects wanted to buy using mail-order were underwear, home -weat and night-wear. The heavy users of mail-order purchasing, however, also wanted to purchase expensive garments requiring precise fit. The subjects aged from 20's to 80's wanted to purchase childern's wear by mail. 4. The desire for diversity of garment item and size of mail-order apparel was relatively high. The subjets also wanted to purchase special size garments by mail-order, e. g., garment sizes for full or tall figure.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0