메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
강인숙 (창원대학교 자연과학대학 의류학과) 김성련 (서울대학교 가정대학 의류학과)
저널정보
한국의류학회 한국의류학회지 한국의류학회지 제19권 제5호
발행연도
1995.1
수록면
765 - 773 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Effect of interfacial electrical conditions such as, the f potential of PET fiber and u-Fe203 particles, the stability parameter and potential energy of interaction on adhesion of a-Fe903 particles to PET fabric and their removal from the fabric, were investigated as functions of pH, electrolyte and ionic strength. The stability parameter, potential energy of interaction between a-Fe2O3 particles and PET fabric were calculated by using the heterocoagulation theory for a sphere-plate model The adhesion of a-Fe2O3 particles to PET fabric and their removal from PET fabric were carried out by using water bath shaker and Terg-O-Tometer under various solution conditions. The adhesion of a-Fe2O3 particles to the PET fabric and the removal of a-Fe2O3 particles from the PET fabric were biphasic and were maximum and minimum at pH 7~8, respectively. With high pH and polyanion electrolytes in solution, the adhesion of a-Fe2O3 particles to the PET fabric was low but effects of electrolytes on the removal of a-Fe2O3 particles from the PET fabric was small. The adhesion of a-Fe2O3 particles to the PET fabric and the removal of a-Fe2O3 Particles from the PET fabric were biphasic, and were lowest and highest at the ionic strength 1$\times$10-3, respectively. The adhesion of a-Fe2O3 particles to PET fabric was well related with the interfacial electrical conditions; it was negatively correlated with the f potentials of a-Fe2O3 Particles of its absolute value, the stability parameter and the maximum of total potential energy, while, the adhesion was not related with the t potentials of PET fiber itself. Therefore, the primary factor determining the adhesion of a-Fe203 particles to PET fabric may be the stability of dispersed particles caused by the electrical repulsion of particles. The removal of a-Fe203 particles from PET fabric was not related to such interfacial electrical conditions as the t potentials of PET fiber, the stability parameter and the maximum of total potential energy but removal was related to t potential of a-Fe203 particles.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0