메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Hwang, Hark (Assistant Professor, Korea Advanced Institute of Science)
저널정보
한국통계학회 JKSS(Journal of the Korean Statistical Society) Journal of the Korean Statistical Society 제5권 제2호
발행연도
1976.1
수록면
91 - 100 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The use of the statistic $t = \sqrt{n} (x-\mu)/S$, where $\bar{X) = \sum X_i/n, \mu = E(X_i), S^2 = \sum(X_i-\bar{X})^2/(n-1)$ in statistical inference is usually done under the assumption of normality of the population. If the population is not normally distributed the tabulated values of student t are no longer valid. The moments of t are obtained as a power series in $1/\sqar{n}$ whose coefficients are functions of the cumulants of X. The cumulants are obtained from the moments in the usual manner. The first eight cumulants of t are given up to terms of order $1/n^3$. The first eight cumulants of t are given up to terms of order $1/n^3$. These results extend those of Geary who gave the first six cumulants of t to order $1/n^2$.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0