메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
You, Hi-Se (Professor of Mathematics, Korea University)
저널정보
한국통계학회 JKSS(Journal of the Korean Statistical Society) Journal of the Korean Statistical Society 제3권 제1호
발행연도
1974.1
수록면
13 - 16 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In my former paper [3] I defined an almost periodicity of weakly sationary random processes (a.p.w.s.p.) and presented some basic results of it. In this paper I shall present some notes on the Fourier series of an a.p.w.s.p., resulting from [3]. All the conditions at the introduction of [3] are assumed to hold without repreating them here. The essential facts are as follows : The weakly stationary process $X(t,\omega), t\in(-\infty,\infty), \omega\in\Omega$, defined on a probability space $(\Omega,a,P)$, has a spectral representation $$X(t,\omega)=\int_{-\infty}^{infty}{e^{it\lambda\xi}(d\lambda,\omega)},$$ where $\xi(\lambda)$ is a random measure. Then, the continuous covariance $\rho(\mu) = E(X(t+u) X(t))$ has the form $$\rho(u)=\int_{-\infty}^{infty}{e^{iu\lambda}F(d\lambda)},$$ $E$\mid$\xi(\lambda+0)-\xi(\lambda-0)$\mid$^2 = F(\lambda+0) - F(\lambda-0) \lambda\in(-\infty,\infty)$</TEX>, assumimg that $\rho(u)$ is a uniformly almost periodic function.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0