메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
Lee, Taek-Kyun (Department of Biological Science, Sungkyunkwan University) Suh, Jung-Bin (Department of Biological Science, Sungkyunkwan University) Kim, Se-Hee (Department of Biological Science, Sungkyunkwan University) Lee, Sun-Min (Department of Biological Science, Sungkyunkwan University) Lee, Woo-Sung (Department of Biological Science, Sungkyunkwan University)
저널정보
한국통합생물학회 한국동물학회 학술대회 한국동물학회 1999년도 한국생물과학협회 학술발표대회
발행연도
1999.1
수록면
11 - 11 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
;It has been reported that suspension-cultured rice cells grown on mixed carbon sources of glucose (GIc) and acetate exhibited diauxic growth in which acetate was the preferred carbon source (Lee and Lee, 1996). Carrot (Daucus carota L.) suspension cells, showing a diauxic growth very similar to that of rice cells, were used to delineate the mechanisms underlying this preferential use of acetate over GIc. Uptakes of both GIc and 3-0-methylglucose (3-0MG), a non-metabolizable GIc analogue, were similarly inhibited when acetate or butylate, weak acids which are capable of transporting protons into the cytosol, were present in the uptake assay mixture containing cells harvested during the GIc-utilizing second growth phase. Inhibition of GIc uptake by these weak acids was similar when equivalent experiments were carried out with isolated plasma membranes. It was further shown that Glc uptake, which requires a proper proton gradient across the plasma membranes, was inhibited during the first growth phase by acetate-mediated alkalization of growth medium and/or simultaneous acidification of cytosol. This study strongly suggests that Glc utilization in plant cells is inhibited by co-presenting carbon source(s) which can alter the proton gradient across the plasma membrane. We further examined diauxic growth in culture containing GIc and malate. Unlike the case in the culture with GIc and acetate, carrot cells used GIc first. Malate was utilized only after Glc is depleted from medium. These results indicate that GIc can be a preferred or less-preferred carbon source depending on the competing carbon source. It was noted that malate was not directly taken up by cells. Instead it was converted extracellularly into fumarate which was subsequently transported into cells. During the malate-growth phase malate uptake was negligible, and fumarate uptake was active and pH-sensitive. It was shown that fumarase released into medium was responsible for the extracellular conversion of malate into fumarate. An immunoblot experiments showed that fumarase antibody raised against Arabidopsis fumarase provided positive signals only in medium in malate culture, not in fumarate or GIc cultures. This study demonstrates the first example in that fumarase, a mitochondria marker enzyme, can be present in places other than mitochondria.ndria.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0