메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
박창호 (동아대 전자공학과)
저널정보
한국음향학회 한국음향학회 워크샵 한국음향학회 1995년도 제12회 음성통신 및 신호처리 워크샵 논문집 (SCAS 12권 1호)
발행연도
1995.1
수록면
175 - 178 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
기존이 연속 출력 분포형 HMM은 시계열의 과도적 변화에 대하여 표현 능력이 부족하다는 단점이 있다. 이것을 보완하기 위해 본 논문에서는 음성의 동적 변화를 반영하기 위한 특징 파라메타로서 여러 개의 프레임을 결합하여 세그멘트를 구성하여 각각에 대해 한 개의 벡터를 만들었다. 이것을 그대로 이용하면 세그멘트의 프레임수에 대응하는 파라메타의 차원수가 증가하기 때문에 학습 데이터가 불충분한 경우 모델의 파라메타를 잘 추정할 수 없으므로 K-L 전개로서 파라메타의 차원을 압축하여 파라메타수를 감소시켰다. 인식실험은 한국어 단음절에 대하여 멜켑스트럼ㅇ르 K-L 전개로 압축한 벡터를 이용한 결과와 멜켑스트럼, 멜켑스트럼 선형회귀계수를 파라메타로 이용한 경우를 비교하였다. 실험결과 K-L 전개로 압축한 벡터만을 이용한 경우는 멜켑스트럼 + 선형회귀계수를 파라메타로 이용한 경우보다 인식율이 낮앗으나 멜켑스트럼 + K-L 전개로 압축한 경우와 거의 동등한 결과를 얻을 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0