메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
황철준 (대구과학대학 정보전자통신계열) 오세진 (영남대학교 전자정보공학부) 김범국 (대구과학대학 정보전자통신계열) 정호열 (영남대학교 전자정보공학부) 정현열 (영남대학교 전자정보공학부)
저널정보
한국음향학회 한국음향학회 학술발표대회 한국음향학회 2000년도 학술발표대회 논문집 제19권 2호
발행연도
2000.1
수록면
183 - 186 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 인식이 진행되는 동안 탐색 공간을 효과적으로 줄임으로써 음성인식의 고속화를 달성할 수 있는 새로운 프레임 단위 적응 프루닝 알고리즘을 제안하고 실험을 통하여 그 유효성을 확인하였다. 이것은 앞 프레임과 뒤 프레임 사이의 최대확률은 높은 상관성을 가지므로 프루닝 문턱치를 앞 프레임의 최대 확률로부터 효과적으로 구할 수 있다는 사실에 근거를 두고있다. 이 방법에서는 앞 프레임의 최대 우도 확률과 후보 확률들의 조합으로 현재 프레임의 프루닝 문턱치를 갱신함으로써 현재 프레임의 문턱치를 인식 과정 중에 얻을 수 있기 때문에, 인식 태스크가 바뀌어도 문턱치를 구하기 위한 사전 실험을 수행할 필요가 없게 된다. 또한, 프레임 단위로 적응적으로 얻어진 문턱치는 다른 환경 하에서도 인식 속도의 향상을 가져올 수 있게 된다. 제안된 알고리즘의 유효성을 확인하여 위하여 한국어 주소 인식 시스템에 적용하였다. 본 시스템은 48개의 유사음소단위(PLUs)를 인식의 기본단위로 하고, 적응알고리즘으로는 최대사후확률추정법((MAP: Maximum A Posteriori Probability Estimation)을, 인식 알고리즘으로는 OPDP(One Pass Dynamic Programming)법을 이용하였다 남성화자 3인이 25개의 연결 주소명을 대상으로 인식 실험을 수행한 결과, 제안된 프레임단위 적응프루닝 문턱치를 적용한 경우를 기존의 고정 프루닝 문턱치와 가변 프루닝 문턱치를 적용한 경우와 비교하였을 때 인식률의 변화 없이 탐색공간이 상대적으로 각각 $14.4\%와 $9.14\%가 감소되어 제안된 프레임 단위 적응 프루닝 알고리즘의 유효성을 확인할 수 있었다. 시,공간적 분포 특성이 구체적으로 규명되면 보다 정확한 음장변화 추정이 이뤄져야 할 것으로 보인다. 또한 내부파와 음파의 상대적인 진행 방향에 따라 음장변화가 크게 다를 것이 예상되므로 이를 규명하기 위해서는 궁극적으로 3차원적인 음장분포 연구가 필요하다. 음향센서를 해저면에 매설할 경우 수충의 수온변화와 센서 주변의 수온변화 사이에는 어느 정도의 시간지연이 존재하게 되므로 이에 대한 영향을 규명하는 것도 센서의 성능예측을 위해서 필요하리라 사료된다.가지는 심부 가스의 개발 성공률을 증가시키기 위하여 심부 가스가 존재하는 지역의 지질학적 부존 환경 및 조성상의 특성과 생산시 소요되는 생산비용을 심도에 따라 분석하고 생산에 수반되는 기술적 문제점들을 정리하였으며 마지막으로 향후 요구되는 연구 분야들을 제시하였다. 또한 참고로 현재 심부 가스의 경우 미국이 연구 개발 측면에서 가장 활발한 활동을 전개하고 있으며 그 결과 다수의 신뢰성 있는 자료들을 확보하고 있으므로 본 논문은 USGS와 Gas Research Institute(GRI)에서 제시한 자료에 근거하였다.ऀĀ 耀 Ā ??⨀ ؀Ā   Ā ?⨀ ጀĀ 耀 Ā � ??ꢘ?⨀ 硩?⨀ ႎ?⨀ ?⨀ ? ?돐 ?잖⨀ ?잖⨀ /ࠐ?⨀ 焆 ?? 瀆 倆 Āⶇ? ⶇ? Ā Ā Ā Ā 磀鲕 ??⨀ 肤?⨀ ⁅ Ⴅ?⨀ ?잖⨀ 䣙熸 ጁ ↏ ?⨀

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0