메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
Nguyen, Hoang Hai (Dept. of Water Resources, Sungkyunkwan University) Choi, Minha (Dept. of Water Resources, Sungkyunkwan University)
저널정보
한국수자원학회 한국수자원학회 학술발표회 한국수자원학회 2019년도 학술발표회
발행연도
2019.1
수록면
154 - 154 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Characterization of reliable field-scale root-zone soil moisture (RZSM) variability contribute to effective hydro-meterological monitoring. Although a promising cosmic-ray neutron probe (CRNP) holds the pontential for field-scale RZSM measurement, it is often restricted at deeper depths due to the non-unique sensitivity of CRNP-measured fast neutron signal to other hydrogen pools. In this study, a merging framework relied on coupling cosmic-ray soil moisture with a representative additional RZSM, was introduced to scale shallower CRNP effective depth to represent root-zone layer. We tested our proposed framework over a densely vegetated region in South Korea covering a network of one CRNP and nine in-situ point measurements. In particular, cosmic-ray soil moisture and ancillary RZSM retrieved from the most time stable location were considered as input datasets; whereas the remaining point locations were used to generate a reference RZSM product. The errors between these two input datasets and the reference were forecasted by a linear autoregressive model. A linear combination of forecasts was then employed to compute a suitable weight for merging two input products from the predicted errors. The performance of merging framework was evaluated against reference RZSM in comparison to the two original products and a commonly used exponential filter technique. The results of this study showed that merging framework outperformed other products, demonstrating its robustness in improving field-scale RZSM. Moreover, a strong relationship between the quality of input data and the performance merging framework in light of CRNP effective depth variation has been also underlined via the merging framework.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0