메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
조경우 (연세대학교 건설환경공학과) 김연주 (연세대학교 건설환경공학과)
저널정보
한국수자원학회 한국수자원학회 학술발표회 한국수자원학회 2019년도 학술발표회
발행연도
2019.1
수록면
115 - 115 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
하천수 흐름예측에 대한 연구는 대부분 WRF-Hydro와 같은 과정기반 모델링 시스템을 이용한다. 과정기반 모델링 시스템은 물리적 현상을 일반화한 수식으로 구성되어있다. 일반화된 수식은 불확실성을 내포하고 있으며 지역적 특성도 반영하지 못한다. 특히 수식에 사용되는 입력자료는 측정값으로 오차가 존재한다. 따라서 과정기반 모델링 시스템 예측결과는 계통오차와 우연오차가 존재한다. 현재 매개변수 보정을 통해 예측결과를 개선하는 방법을 사용하고 있으나 한계가 있다. 본 연구는 이러한 한계를 극복하기 위해 상호보완적인 Data-driven 모델을 구축하여 과정기반 모델링 시스템 결과를 개선하고자 하였다. Data-driven 모델 구축을 위해 머신러닝 기법인 instance-based weighting(IBW)과 support vector regression(SVR)을 사용하였다. 구축된 Data-driven 모델은 한반도 지역 주요 저수지 및 호수의 하천수 흐름예측을 통해 검증하였다. 검증을 위해 과정기반 모델링 시스템으로 WRF-Hydro를 구동하였다. 입력자료는 기상청의 국지수치예측모델자료(LDAPS), HydroSHEDS의 수치표고모델자료(DEM), 국가지리정보원의 저수지 및 호수 연속수치지형도를 사용하였다. 본 연구를 통해 구축된 Data-driven모델은 기존 과정기반 모델링 시스템의 오류수정 한계를 머신러닝을 이용하여 개선할 수 있는 가능성을 제시하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0