메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
최성욱 (연세대학교 대학원 토목환경공학과) 최성욱 (연세대학교 공과대학 토목환경공학과)
저널정보
한국수자원학회 한국수자원학회 학술발표회 한국수자원학회 2016년도 학술발표회
발행연도
2016.1
수록면
57 - 61 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
교각 주위에서의 국부세굴은 교각을 지나는 유체의 복잡한 흐름에 의해 발생한다. 이를 해석하기 위하여 많은 난류모형을 이용한 실내실험 및 수치실험을 수행하였으나 발생하는 와류를 하천 규모에서 전부 계산하기는 매우 어려운 문제다. 따라서 국부세굴 관련으로 최대 관심사인 최대 세굴심은 인공지능 기술에 근거한 다양한 기법을 적용해 계산하여 예측하기도 한다. 본 연구에서는 기계학습 분야 중 하나인 서포트 벡터 머신 (Support Vector Machines)을 이용하여 교각주위 국부세굴을 예측하였다. SVM은 본래 초평면을 이용하여 데이터를 분류시키는 기법이나 Vapnik(1995)이 제안한 ${\varepsilon}$ 서포트 벡터 회귀 (${\varepsilon}$-support vector regression)방법을 통해 회귀분석에도 활용할 수 있게 되었다. 학습을 위해 Charbert and Engeldinger (1956), Shen et al. (1969), Jain and Fischer (1979), 그리고 Dey et al. (1995)의 실험 자료를 이용하였고 검증을 위해 Yanmaz and Altinbilek (1991)의 실험 자료를 이용하였다. 커널함수로는 다항식 함수와 방사 기저 함수를 이용하였고 각 계수는 적합한 값을 찾기 위해 시행착오법을 사용하였다. 민감도 분석을 통해 각 계수들 중 ${\varepsilon}$의 변화가 결과에 가장 민감하게 변화를 일으키는 것을 확인하였고 검증 결과 SVM가 충분히 국부세굴을 잘 예측하는 것을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0