메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
Ngo, Thi Thuy (Dept. of Civil, Environmental and Architectural Engineering, Korea University) Yazdi, Jafar (Faculty of Civil Engineering, University of Shahrood) Kim, Joong Hoon (Dept. of Civil, Environmental and Architectural Engineering, Korea University)
저널정보
한국수자원학회 한국수자원학회 학술발표회 한국수자원학회 2015년도 학술발표회
발행연도
2015.1
수록면
218 - 218 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Urbanization and waterworks construction in natural watershed have been causing higher flood risks in lowland areas. Detention basins have become one of the most efficient fundamental instruments for storm water and environmental management at watershed scale. Nowadays, there are many studies coupled numerical methods of flood routing with optimization algorithms to investigate factors that impact on the efficiency of detention basins in flood reduction in a watershed, such as detention basin location, size, and cost and watershed characteristics. Although these couplings have been become more widespread but cumbersome computation and hydraulic data requirement still are their limitations. To tackle the procedure efforts due to numerical integration and data collection, simple approach is proposed to primarily estimate effects of detention basins. The approach basis is the linear system theory applied to the solution of hydrologic flood routing. The paper introduces an analytical method for estimating detention effects deriving by recent studies and innovatively analyses this equation on fractal perspective. Then, an optimization technique is performed by applying harmony search algorithms (HSA) to optimize efficiency of detention basins at watershed scale. The location and size of upstream detention basin are simultaneously obtained. Finally, the proposed methodology, practically applied for a real watershed in Kan river, Iran.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0