메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
Kjeldsen, Thomas Rodding (Department of Architecture and Civil Engineering, University of Bath) Kim, Hyeonjun (Hydro Science and Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology[KICT]) Jang, Cheolhee (Hydro Science and Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology[KICT]) Lee, Hyosang (School of Civil engineering, Chungbuk National University)
저널정보
한국수자원학회 한국수자원학회 학술발표회 한국수자원학회 2015년도 학술발표회
발행연도
2015.1
수록면
235 - 235 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study investigates the impact of event characteristics on runoff dynamics during extreme flood events observed in a $8.5km^2$ experimental watershed located in South Korea. The 37 most extreme flood events with event rainfall in excess of 50 mm were analysed using an event-based rainfall-runoff model; the Revitalised Flood Hydrograph (ReFH) routinely used for design flood estimation in the United Kingdom. The ReFH model was fitted to each event in turn, and links were investigated between each of the two model parameters controlling runoff production and response time, respectively, and event characteristics such as rainfall depth, duration, intensity and also antecedent soil moisture. The results show that the structure of the ReFH model can effectively accommodate any nonlinearity in runoff production, but that the linear unit hydrograph fails to adequately represent a reduction in watershed response time observed for the more extreme events. By linking the unit hydrograph shape directly to rainfall depth, the consequence of the observed nonlinearity in response time is to increase design peak flow by between 50% for a 10 year return period, and up to 80% when considering the probable maximum flood (PMF).

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0