메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
이아영 (서울대학교 농업생명과학대학 바이오시스템.소재학부 바이오시스템공학과) 홍석주 (서울대학교 농업생명과학대학 바이오시스템.소재학부 바이오시스템공학과) 노신정 (서울대학교 농업생명과학대학 바이오시스템.소재학부 바이오시스템공학과) 박희수 (서울대학교 농업생명과학대학 바이오시스템.소재학부 바이오시스템공학과) 김용노 (서울대학교 농업생명과학대학 바이오시스템.소재학부 바이오시스템공학과) 김기석 (서울대학교 농업생명과학대학 바이오시스템.소재학부 바이오시스템공학과)
저널정보
한국농업기계학회 한국농업기계학회 학술발표논문집 한국농업기계학회 2017년도 춘계공동학술대회
발행연도
2017.1
수록면
98 - 98 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
대부분의 가정과 요식업체, 식품가공업계에서 이용하고 있는 식용유지는 저장 및 가공과정 중에 산패가 빈번하게 일어나게 된다. 기존에는 유지 산패를 측정하기 위해 산가, 과산화물가 등을 측정하는 이화학적인 적정방법을 이용하였는데 실험자의 숙련도에 따라 결과의 오차가 발생할 수 있고, 반복실험으로 인한 시간과 비용이 많이 소모되는 등 여러 제약사항을 포함하고 있어 식용유지의 산패를 실시간 비파괴적으로 분석할 수 있는 기술의 개발에 많은 관심이 모아지고 있다. 따라서, 본 연구에서는 식용유지의 저장조건에 따른 산패정도를 비파괴적으로 평가하기 위한 근적외선 분광분석과 인공신경망 분석기술을 개발하여 그 실효성을 평가하였다. 식물성 식용유지인 들기름을 특정 온도에서 일정한 시간동안 저장하면서 이화학적 적정방법을 통해 산가와 과산화물가를 측정하였으며 동일한 시료의 근적외선 투과스펙트럼을 획득하였다. 수집된 정보를 이용하여 유지 산패 예측 모델을 개발하기 위해 다변량 분석기법 (주성분 회귀분석, 최소자승 회귀분석과 인공신경망 분석)을 적용하였다. 분석 결과, 인공신경망 분석모델이 산가 ($R^2_{tra}:0.9037$, $R^2_{val}:0.8175$, $R^2_{test}:0.8555$)와 과산화물가 ($R^2_{tra}:0.9210$, $R^2_{val}:0.9341$, $R^2_{test}:0.8286$)의 예측 성능이 가장 우수한 것으로 확인되었다. 본 연구의 결과들은 농산물과 식품의 성분 측정뿐만 아니라 다른 산업분야에서도 유용하게 활용될 수 있을 것으로 기대되어진다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0