메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
박재훈 (서강대학교 정보통신대학원) 구명완 (서강대학교 정보통신대학원)
저널정보
한국어정보학회 한국어정보학회 학술대회 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
발행연도
2016.1
수록면
291 - 295 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 한국어 기본 유니트 단위로 WPM을 활용한 구글 플레이 스토어 앱의 댓글 감정분석을 수행하였다. 먼저 자동 띄어쓰기 시스템을 적용한 후, 어절단위, 형태소 분석기, WPM을 각각 적용하여 모델을 생성하고, 로지스틱 회귀(Logistic Regression), 소프트맥스 회귀(Softmax Regression), 서포트 벡터머신(Support Vector Machine, SVM)등의 알고리즘을 이용하여 댓글 감정(긍정과 부정)을 비교 분석하였다. 그 결과 어절단위, 형태소 분석기보다 WPM이 최대 25%의 향상된 결과를 얻었다. 또한 분류 과정에서 로지스틱회귀, 소프트맥스 회귀보다는 SVM 성능이 우수했으며, SVM의 기본 파라미터({'kernel':('linear'), 'c':[4]})보다 최적의 파라미터를 적용({'kernel': ('linear','rbf', 'sigmoid', 'poly'), 'C':[0.01, 0.1, 1.4.5]} 하였을 때, 최대 91%의 성능이 나타났다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0