메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
남석현 (한국과학기술원) 함영균 (한국과학기술원) 최기선 (한국과학기술원)
저널정보
한국어정보학회 한국어정보학회 학술대회 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
발행연도
2017.1
수록면
147 - 150 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Deep learning의 개발에 따라 개체명 인식에도 neural network가 적용된 연구가 활발히 일어나고 있다. 영어권 개체명 인식에서는 F1 score 90%을 웃도는 성능을 내는 연구들이 나오고 있다. 하지만 한국어는 영어와 언어적 특질이 많이 달라 이를 그대로 적용시키는 데는 어려움이 있어 영어권 개체명 인식기에 비해 비교적 낮은 성능을 보인다. 본 논문에서는 "하다" 접사의 동사형이 보존된 워드 임베딩을 사용하고 한국어 개체명의 특징을 담은 one-hot 벡터를 추가하여 한국어의 특질에 보다 적합한 데이터를 deep learning 기술에 적용하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0