메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
김희정 (남서울대학교) 김지희 (강원대학교) 노상균 (선문대학교)
저널정보
한국화재소방학회 한국화재소방학회 학술대회 논문집 한국화재소방학회 2012년도 춘계학술발표회 초록집
발행연도
2012.1
수록면
190 - 193 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
The tools that classify the severity of patients based on the prediction of mortality include APACHE, SAPS, and MPM. Theses tools rely crucially on the evaluation of patients' general clinical status on the first date of their admission to ICU. Nursing activities are one of the most crucial factors influencing on the quality of treatment that patients receive and one of the contributing factors for their prognosis and safety. The purpose of this study was to identify the goodness-of-fit of CPSCS of critical patient severity classification system(CPSCS) and Glasgow coma scale(GCS) and the clinical usefulness of its death rate prediction. Data were collected from the medical records of 187 neurological patients who were admitted to the ICU of C University Hospital. The data were analyzed through $x^2$ test, t-test, Mann-Whitney, Kruskal-Wallis, goodness-of-fit test, and ROC curve. In accordance with patients' general and clinical characteristics, patient mortality turned out to be statistically different depending on ICU stay, endotracheal intubation, central venous catheter, and severity by CPSCS. Homer-Lemeshow goodness-of-fit tests were CPSCS and GCS and the results of the discrimination test using the ROC curve were $CPSCS_0$,.734, $GCS_0$,.583, $CPSCS_{24}$,.734, $GCS_{24}$,.612, $CPSCS_{48}$,.591, $GCS_{48}$,.646, $CPSCS_{72}$,.622, and $GCS_{72}$,.623. Logistic regression analysis showed that each point on the CPSCS score signifies1.034 higher likelihood of dying. Applied to neurologically ill patients, early CPSCS scores can be regarded as a useful tool.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0