메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
전종준 (서울대학교 자연과학대학 통계학과) 김영오 (서울대학교 건설환경공학부) 김용대 (서울대학교 자연과학대학 통계학과) 박준형 (서울대학교 자연과학대학 건설환경공학부)
저널정보
한국수자원학회 한국수자원학회 학술발표회 한국수자원학회 2010년도 학술발표회
발행연도
2010.1
수록면
357 - 361 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
미래의 연별 최대 강수량 예측의 정확성을 향상시키는데 역사적 자료가 도움이 된다는 많은 연구 결과가 있었다. 관측의 오차와 자료의 손실로 역사자료를 이용한 강수 예측 방법은 절단자료의 분석을 중심으로 연구되었다. 대표적인 역사자료의 이용방법으로 조건부 적률을 이용한 B17B [Interagency Committee in Water Data, 1982], 조건부적률과적률 관계식을 이용한 Expected Moment Algorithm(EMA) [Cohn et al.;1997], 조건부 확률가중적률을 이용한 Partial Probability Weighted Moment (PPWM)[Wang ; 1991] 방법이 있다. 본 연구에서는 역사적 자료를 반영하는 방법에 있어 B17B와 EMA의 관계를 밝히고 그러한 관계가 PPWM에 동일하게 적용할 수 있음을 보였다. 우리는 B17B와 EMA의 관계를 적률방정식으로 표현하였고 PPWM에서 확률가중 적률 방정식을 정의함으로써 PPWM을 확장하였다. 본 연구에서 제안한 새로운 역사 자료를 이용한 강수예측 방법론을 Expected Probability Weighted Momemt (EPWM) 방법이라고 부르고 그 예측 방법의 성능을 다른 예측방법과 시뮬레이션 결과를 통해 비교하였다. 역사 자료 방법론의 비교는 Generalized Extreme Value (GEV) 분포를 이용하여 이루어졌으며, 각 방법론은 GEV분포의 형태모수(shape parameter)따라 다른 특성을 나타난다는 것을 보였다. 뿐만 아니라 여기서 제안한 EPWM 방법은 대부분의 경우에 좋은 추정량을 준다는 것을 보였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0