메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
Ji, Sung-Hoon (Korea Atomic Energy Research Institute) Park, Young-Jin (University of Waterloo, 200 University Avenue West, Waterloo) Lee, Kang-Kun (Seoul National University) Kim, Kyoung-Su (Korea Atomic Energy Research Institute)
저널정보
한국방사성폐기물학회 한국방사성폐기물학회 학술대회 한국방사성폐기물학회 2009년도 학술논문요약집
발행연도
2009.1
수록면
186 - 186 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The characterization strategy of fracture networks are classified into a deterministic or statistical characterization according to the type of required information. A deterministic characterization is most efficient for a sparsely fractured system, while the statistics are sufficient for densely fractured rock. In this study, the ensemble mean and variability of the effective connectivity is systematically analyzed with various density values for different network structures of a power law size distribution. The results of high resolution Monte Carlo analyses show that statistical characteristics can be a necessary information to determine the transport properties of a fracture system when fracture density is greater than a percolation threshold. When the percolation probability (II) approaches unity with increasing fracture density, the effective connectivity of the network can be safely estimated using statistics only (sufficient condition). It is inferred from conditional simulations that deterministic information for main pathways can reduce the uncertainty in estimation of system properties when the network becomes denser. Overall results imply that most pathways need to be identified when II < 0.5 statistics are sufficient when II $\rightarrow$ 1 and statistics are necessary and the identification of main pathways can significantly reduce the uncertainty in estimation of transport properties when 0.5<II$\ll$1. It is suggested that the proper estimation of the percolation probability of a fracture network is a prerequisite for an appropriate conceptualization and further characterization.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0