메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
강태호 (한국건설기술연구원 수자원연구부) 홍일표 (한국건설기술연구원 수자원연구부) 김영오 (서울대학교 건설환경공학부)
저널정보
한국수자원학회 한국수자원학회 학술발표회 한국수자원학회 2009년도 학술발표회 초록집
발행연도
2009.1
수록면
1,254 - 1,259 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
과거 관측된 수문자료는 분석을 통해 다양한 수문모형의 평가 및 예측과 수자원 정책결정에서 활용된다. 하지만 관측장비의 오작동 및 관측범위의 한계에 의해 수집된 자료에는 결측이 존재한다. 단순히 결측이 존재하는 벡터를 제외하거나, 결측이 존재하는 자료 구간에 선형성이 존재한다는 가정 하에 평균을 활용하기도 했으나, 이로 인하여 자료의 통계특성에 왜곡이 야기될 수 있다. 본 연구는 결측의 보정으로 자료가 보유하는 정보의 손실 및 왜곡을 최소화 할 수 있는 방안을 연구하고자 한다. 자료의 결측은 크게 완벽한 무작위 결측(missing completely at random, MCAR), 무작위 결측(missing at random, MAR), 무작위성이 없는 결측(nonrandom missingness)으로 분류되며, 수문자료는 결측을 포함한 기간이 그 외 기간의 자료와 통계적으로 동일하지는 않지만 결측자료의 추정이 가능한 MAR에 속하는 것이 일반적이므로 이를 가정으로 결측을 보정하였다. Local Lest Squares Imputation(LLSimput)을 결측의 추정을 위해 사용하였으며, 기존에 쉽게 사용되던 선형보간법과 비교하였다. 적용성 평가를 위해 소양강댐 일 유입량 자료에 1 - 5 %의 결측자료를 임의로 생성하였다. 동일한 양의 결측자료에 대해 100개의 셋을 사용하여 보정의 불확실성 범위를 적용된 방법에 대해 비교..평가하였으며, 결측 증가에 따른 보정효과의 변화를 검토하였다. Normalized Root Mean Squared Error(NRMSE)를 사용하여 적용된 두 방법을 평가한 결과, (1) 결측자료의 비가 낮을수록 간단한 선형보간법을 사용한 보정이 효과적이었다. (2) 하지만 결측의 비가 증가할수록 선형보간법의 보정효과는 점차 큰 불확실성과 낮은 보정효과를 보인 반면, (3) LLSimpute는 결측의 증가에 관계없이 일정한 보정효과 및 불확실성 범위를 나타내는 것으로 드러났다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0