메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
김상욱 (서울대학교 BK21 SIR 사업단) 이길성 (서울대학교 공과대학 건설환경공학부) 김경태 (서울대학교 공과대학 건설환경공학부)
저널정보
한국수자원학회 한국수자원학회 학술발표회 한국수자원학회 2008년도 학술발표회 논문집
발행연도
2008.1
수록면
1,125 - 1,128 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (5)

초록· 키워드

오류제보하기
본 연구에서는 Bayesian MCMC 방법과 2차 근사식을 이용한 최우추정(Maximum Likelihood Estimation, MLE)방법 방법을 이용하여 낙동강 유역의 본류지점인 낙동, 왜관, 고령교, 진동지점에 대한 점 빈도분석을 수행하고 그 결과로써 불확실성을 포함한 빈도곡선을 작성하였다. 통계적 실험을 통한 두 가지 추정방법의 분석을 위하여 먼저 자료의 길이가 100인 8개의 합성 유량자료 셋을 생성하여 비교 연구를 수행하였으며, 이를 자료길이 36인 실측 유량자료의 추정결과와 비교하였다. Bayesian MCMC 방법에 의한 평균값과 2차 근사식을 이용한 취우추정방법에 의한 모드에서의 2모수 Weibull 분포의 모수 추정값은 비슷한 결과를 보였으나, 불확실성을 나타내는 하한값과 상한값의 차이는 Bayesian MCMC 방법이 2차 근사식을 이용한 취우추정방법보다 불확실성을 감소시켜 나타내는 것을 알 수 있었다. 또한 실측 유량자료를 이용한 결과, 2차 근사식을 이용한 최우추정방법의 경우 자료의 길이가 감소됨에 따라 불확실성의 범위가 합성 유량자료를 사용한 경우에 비해 상대적으로 증가되지만, Bayesian MCMC 방법의 경우에는 자료의 길이에 대한 영향이 거의 없다는 결론을 얻을 수 있었다. 그러므로 저수량 빈도분석을 수행하기 위해 충분한 자료를 확보할 수 없는 국내의 상황을 감안할 때, 위와 같은 결론으로부터 Bayesian MCMC 방법이 불확실성을 표현하는데 있어서 2차 근사식을 이용한 최우추정방법에 비해 합리적일 수 있다는 결론을 얻을 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0