메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
강부식 (단국대학교 토목환경공학) 이봉기 (단국대학교 토목환경공학과)
저널정보
한국수자원학회 한국수자원학회 학술발표회 한국수자원학회 2008년도 학술발표회 논문집
발행연도
2008.1
수록면
1,027 - 1,031 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (7)

초록· 키워드

오류제보하기
본 연구는 한반도 영역을 대상으로 2001년 7, 8월과 2002년 6월로 홍수기를 대상으로 RDAPS 모형, AWS, 상층기상관측(upper-air sounding)의 자료를 이용하였다. 또한 수치예보자료를 범주적 예측확률로 변환하고 인공신경망기법(ANN)을 이용하여 강수발생확률의 예측정확성을 향상시키는데 있다. 신경망의 예측인자로 사용된 대기변수는 500/ 750/ 1000hpa에서의 지위고도, 500-1000hpa에서의 층후(thickness), 500hpa에서의 X와 Y의 바람성분, 750hpa에서의 X와 Y의 바람성분, 표면풍속, 500/ 750hpa/ 표면에서의 온도, 평균해면기압, 3시간 누적 강수, AWS관측소에서 관측된 RDAPS모형 실행전의 6시간과 12시간동안의 누적강수, 가강수량, 상대습도이며, 예측변수로는 강수발생확률로 선택하였다. 강우는 다양한 대기변수들의 비선형 조합으로 발생되기 때문에 예측인자와 예측변수 사이의 복잡한 비선형성을 고려하는데 유용한 인공신경망을 사용하였다. 신경망의 구조는 전방향 다층퍼셉트론으로 구성하였으며 역전파알고리즘을 학습방법으로 사용하였다. 강수예측성과의 질을 평가하기 위해서 $2{\times}2$ 분할표를 이용하여 Hit rate, Threat score, Probability of detection, Kuipers Skill Score를 사용하였으며, 신경망 학습후의 강수발생확률은 학습전의 강수발생확률에 비하여 한반도영역에서 평균적으로 Kuipers Skill Score가 0.2231에서 0.4293로 92.39% 상승하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0