메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
Hara, Kazuo (Graduate School of Information Science, Nara Institute of Science and Technology) Matsumoto, Yuji (Graduate School of Information Science, Nara Institute of Science and Technology)
저널정보
한국생물정보시스템생물학회 한국생물정보시스템생물학회 학술대회 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
발행연도
2005.1
수록면
85 - 90 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, firstly we report experimental results on applying information extraction (IE) methodology to the task of summarizing clinical trial design information in focus on ‘Compared Treatment’, ‘Endpoint’ and ‘Patient Population’ from clinical trial MEDLINE abstracts. From these results, we have come to see this problem as one that can be decomposed into a sentence classification subtask and an IE subtask. By classifying sentences from clinical trial abstracts and only performing IE on sentences that are most likely to contain relevant information, we hypothesize that the accuracy of information extracted from the abstracts can be increased. As preparation for testing this theory in the next stage, we conducted an experiment applying state-of-the-art sentence classification techniques to the clinical trial abstracts and evaluated its potential in the original task of the summarization of clinical trial design information.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0