메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
김종권 (신흥대학 경상정보계열)
저널정보
대한안전경영과학회 대한안전경영과학회 학술대회 대한안전경영과학회 2004년도 추계학술대회
발행연도
2004.1
수록면
415 - 438 (24page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This dissertation is assumed to continuously occur adjustment cost on present investment. So, I derived from time-nonseparable production-based CAPM and tested the performance of model through data. I also compared time-nonseparable production-based CAPM with time-separable production-based CAPM and CCAPM, CAPM through testifying the performance of model. At the part of applied application, I estimated time-nonseparable PCAPM-betas. The data of Korea consists of 320 listed companies on Korea Stock Exchange (KOSPI) from first quarter 1987 to first quarter 2002. This data also is categorized by scale and industries. Additionally, I estimated time-nonseparable PCAPM-betas through 500 listed companies of New York Stock Exchange (NYSE) from first quarter 1973 to first quarter 2002. I observed the statistical significance of 230 firms by 320 companies in Korea. After that, I compared time-nonseparable PCAPM-betas by firms with time-separable production-based CAPM-betas and CCAPM-betas, CAPM-betas through individual firms. At empirical test, I found that estimated parameter of adjustment cost on time-nonseparable production-based CAPM by scale and industries in Korea had positive value and statistical significance, Moreover, this approach proved to resolve the underestimation of adjustment cost on time-separable production-based CAPM by scale and industries. I also found that the time-nonseparable PCAPM performed better than time-separable production-based CAPM and CCAPM, CAPM. The result from U.S data proved to have similarity to that of Korea. Specifically, I found that time-nonseparable PCAPM-betas by firms performed better than CAPM-betas on individual firms in Korea.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0