메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
이원범 (부산대학교 의과대학 이비인후과학교실) 왕수건 (부산대학교 의과대학 이비인후과학교실) 권순복 (부산대학교 의과대학 이비인후과학교실) 전경명 (부산대학교 의과대학 이비인후과학교실) 전계록 (부산대학교 의과대학 의공학교실) 김수미 (부산대학교 전자공학과) 김형순 (부산대학교 전자공학과) 양병곤 (동의대학교 영어영문학과) 조철우 (창원대학교 제어계측학과)
저널정보
대한후두음성언어의학회 대한음성언어의학회 학술대회 대한음성언어의학회 2003년도 제19회 학술대회
발행연도
2003.1
수록면
149 - 149 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
후두질환 감별용 음성 분석방법인 multi-dimensional voice program (MDVP)으로 분석이 불가능할 정도로 주기성이 크게 훼손된 후두암 말기의 음성 에 대하여 효과적인 감별을 하기 위하여, 몇 가지 켑스트럼(cepstrum) 파라미터를 비롯하여, 주기성 및 그 동요 정도, 영교차율(zero-crossing rate, ZCR), 스텍트럼 중심 (spectral centroid, SC) 등 다양한 특징 파라미터를 이용한 감별 실험을 수행하였다. 후두암 감별 실험을 위해 부산대학교 병원 이비인후과에서 수집한 정상 남자 음성 데이터 50개, 양성 후두질환 남자 음성 데이터 50개 및 남성 후두암 환자 음성 데이터 105개를 사용하였다. 음성 데이터는 단모음 /아/ 발성만을 사용하였고, 정상인과 양성후두질환 환자, 그리고 MDVP 분석이 가능한 후두암 환자 음성 데이터 중 2/3는 학습에, 나머지 113은 감별실험에 사용하였다. 후두암 감별을 위한 분류기로는 Gaussian Mixture Model(GMM) 분류기를 사용하였으며, 이때 모델의 복잡도를 표현하는 mixture 수는 1에서 10까지 가변시키면서 가장 좋은 성능을 나타내는 값으로 결정하였다. 또한 모든 실험에서 켑스트럼 분석의 차수는 동일하게 12차로 고정시켰다. (중략)

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0