메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
Yang, Jeong-Seok (Seoul National University) Kim, Hee Joon (Pukyung National University)
저널정보
한국지구물리.물리탐사학회 한국지구물리탐사학회 학술대회 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
발행연도
2003.1
수록면
383 - 389 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Clay minerals show a distinct induced-polarization phenomenon, which is one of the most important factors for predicting groundwater flow and contaminant transport. This paper presents a step-by-step process to estimate Cole-Cole parameters from spectral induced-polarization (IP) data measured on the surface of three-dimensional earth. First, the inversion of low-frequency resistivity survey data is made to identify the dc resistivity ${\rho}_dc$ of a volume having IP effects. The other parameters, chargeability m, time constant $\tau$, and frequency dependence c, are sought for the polarizable volume. Next, using multi-frequency data, c can be obtained as high or low asymptotes of the slope of log phase vs. log frequency. Further, for low m, intrinsic $\tau$ is approximated by apparent one, ${\tau}_a$, which is derived from the relation ${{\omega}{\tau}}_a$=1 at an angular frequency $\omega$, where the imaginary component of spectral IP data has an extreme value. Finally, to obtain intrinsic m a two-step linearized procedure has been derived. For a body of given $\tau$ and c, forward modeling with a progression of m values yields a plot of observed vs. intrinsic imaginary components for a frequency. Since this plot is essentially linear, to extract the intrinsic imaginary component is quite simple with an observed value. Using the plot of intrinsic imaginary component vs. m, intrinsic m is determined. We present a synthetic example to illustrate that the Cole-Cole parameters can be recovered from spectral IP data.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0