메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국전산응용수학회 한국전산응용수학회 학술발표회 한국전산응용수학회 2003년도 KSCAM 학술발표회 프로그램 및 초록집
발행연도
2003.1
수록면
15 - 15 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
We provide some recent results of approximation algorithms for solving Markov Games and discuss their applications to problems that arise in Computer Science. We consider a receding horizon approach as an approximate solution to two-person zero-sum Markov games with an infinite horizon discounted cost criterion. We present error bounds from the optimal equilibrium value of the game when both players take “correlated” receding horizon policies that are based on exact or approximate solutions of receding finite horizon subgames. Motivated by the worst-case optimal control of queueing systems by Altman, we then analyze error bounds when the minimizer plays the (approximate) receding horizon control and the maximizer plays the worst case policy. We give two heuristic examples of the approximate receding horizon control. We extend “parallel rollout” and “hindsight optimization” into the Markov game setting within the framework of the approximate receding horizon approach and analyze their performances. From the parallel rollout approach, the minimizing player seeks to combine dynamically multiple heuristic policies in a set to improve the performances of all of the heuristic policies simultaneously under the guess that the maximizing player has chosen a fixed worst-case policy. Given $\varepsilon$>0, we give the value of the receding horizon which guarantees that the parallel rollout policy with the horizon played by the minimizer “dominates” any heuristic policy in the set by $\varepsilon$, From the hindsight optimization approach, the minimizing player makes a decision based on his expected optimal hindsight performance over a finite horizon. We finally discuss practical implementations of the receding horizon approaches via simulation and applications.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0