메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
강은수 (동국대학교) 고병국 (동국대학교) 이조순 (동국대학교) 최하진 (동국대학교) 김준오 (동국대학교) 이병권 (서원대학교)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회 학술발표논문집 2020년 한국컴퓨터정보학회 하계학술대회 논문집 제28권 제2호
발행연도
2020.7
수록면
339 - 342 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 AI 학습을 위한 데이터 수집을 위해 윈도우 환경에서 YOLO 시스템을 사용한 객체 인식에 대한 방법을 제안한다. 이 방법은 아나콘다, 리눅스 등의 가상환경을 요구하지 않기 때문에 실사용 이전 사전 환경설정 작업 시간을 최소화한다. 또한 이 방법은 Visual Studio, OpenCV, CUDA 등 익숙한 플랫폼 및 라이브러리를 요구하기 때문에 다른 사람들에게 편안한 작업환경 제공한다. 또한 기존의 COCO 데이터셋을 사용한 YOLOv3가 아닌 추가 학습 방법을 제안함으로써 보다 보편적인 객체 인식이 가능하다. 따라서 빠른 시간 내에 자신이 원하는 객체를 인식할 수 있는 시스템을 구축하는 방법을 제안한다.

목차

요약
I. Introduction
II. Preliminaries
III. The Proposed Scheme
IV. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0