메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강종구 (KAIST) 류덕산 (전북대학교) 백종문 (KAIST)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.47 No.8
발행연도
2020.8
수록면
769 - 778 (10page)
DOI
10.5626/JOK.2020.47.8.769

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
소프트웨어 결함 예측(Software Defect Prediction)은 최신의 다양한 기계학습 (Machine Learning) 기법을 적용하여 과거의 소프트웨어 결함 및 업데이트 정보를 학습한 모델을 기반으로 새로 개발된 소프트웨어 결함을 사전에 예측하는 연구이다. 이를 통해 실제 산업에서 소프트웨어 품질보증(SQA) 자원을 효과적으로 운영/배치하기 위한 가이드로 활용할 수 있다. 최근 산업 적용 사례들이 일부 학계에 보고되고 있지만, 특성이 서로 다른 다양한 도메인 적용과 이를 적용하면서 얻은 통찰을 실제에 반영하는 연구가 보다 활발하게 필요한 상황이다. 본 논문에서는 최근 고효율 친환경 선박, 커넥티드 선박, 스마트 선박, 무인 선박, 자율운항 선박 등 미래 운송 수단으로의 변화에 직면해 있는 조선해양/해상운송 산업에 소프트웨어 결함 예측의 적용 가능성을 제시한다. 해당 도메인에서 수집된 실제 데이터를 활용하여 실험을 수행한 결과 0.91 Accuracy와 0.831 F-measure의 높은 결함 예측 성능을 보여 가능성을 확인하였고, 기존 사례가 없는 해당 산업으로의 적용 방안을 제시하여 SQA 자원 배치를 효과적으로 지원하는 도구가 될 것으로 기대 된다.

목차

요약
Abstract
1. 서론
2. 배경 지식
3. 관련 연구
4. 조선해양 및 해상운송 산업의 소프트웨어 결함 예측 적용
5. 실험 환경 구성
6. 실험 결과
7. 논의
8. Threats to Validity
9. 결론 및 향후 연구
References

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0