메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
신종규 (금오공과대학교) 허인석 (금오공과대학교) 허준혁 (금오공과대학교) 양동민 (금오공과대학교) 김상호 (금오공과대학교)
저널정보
대한인간공학회 대한인간공학회 학술대회논문집 2020 대한인간공학회 춘계학술대회
발행연도
2020.6
수록면
72 - 75 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Objective: The purpose of this study was to identify factors affecting the user’s technology acceptance in order to secure the user’s acceptance of Voice-based AI-infused systems. Background: Artificial intelligence technology is applied across various fields, so users can easily access the AI-infused system. In particular, the voice-based intelligent system is mounted on a mobile or artificial intelligence speaker, and is a system that is commonly encountered, but its utilization is not large. Therefore, it is necessary to find factors affecting users’ acceptance of voice-based AI-infused systems and derive improvements. Method: Based on previous studies related to acceptability for AI-infused systems, we derive factors affecting acceptability. Data collection and acceptance factors are classified according to quality factors through Kano Model-based questionnaires. Factors affecting acceptance are analyzed according to gender, frequency of use of AI-infused systems, and interest in new technologies. Results: As a result of classifying the Kano Model for factors affecting water solubility, it was confirmed that the quality of water solubility influencing factors differed, especially in terms of new technology interest. Conclusion: It was possible to grasp the factors affecting acceptability according to the user’s characteristics and to draw factors to consider to ensure acceptability. Application: This study will be used as basic research to derive a method to secure acceptance when designing voice-based AI-infused systems.

목차

ABSTRACT
1. Introduction
2. Method
3. Results
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0