메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Bin Liu (Hunan University) Wei Fan (Hunan University) Xu Huang (University of Toronto) Xudong Shao (Hunan University) Lijing Kang (Hunan University)
저널정보
한국콘크리트학회 International Journal of Concrete Structures and Materials International Journal of Concrete Structures and Materials Vol.14 No.4
발행연도
2020.7
수록면
549 - 572 (24page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Detailed finite element (FE) models are often employed to predict the impact responses of reinforced concrete (RC) columns. However, they always require substantial investments of time and effort in modeling and analysis so that they are not widely used in practice, particularly in preliminary designs. Moreover, although some simplified models have been established for beams and slabs under impact loading, few attempts have been made on modeling RC columns. For these reasons, this paper proposes a simplified modeling method to accurately capture the impact-induced response and damage of circular RC columns. In the proposed method, a two-degree-of-freedom (DOF) system was used to describe the interaction between the impactor and the impacted column. The formulas, and procedure to estimate the force-deformation relationship with strain-rate effects were presented according to the section-based analysis. The influence of the unloading stiffness on the residual deformation was addressed, and the method to determine the unloading stiffness of circular columns was proposed. Furthermore, a fiber-based beam-column element modeling method was developed to estimate the force-deformation relationship of the columns with strain-rate effects. The proposed simplified method was demonstrated by the drop-hammer impact tests to be capable of predicting the impact response of RC columns well. Its accuracy in the residual deformation is superior to that of the detailed FE simulation. Parametric studies were performed to investigate the damage characteristics of axially-loaded circular RC columns under various impact scenarios.

목차

Abstract
1. Introduction
2. Development of the Simplified Model
3. Model Validations and Discussions
4. An Efficient Method to Obtain Structural Resistances
5. Impact Damage Evaluation of Axially-Loaded RC Columns
6. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-532-001098694